
COMBINATORICS
AND GEOMETRY
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About CGI 2025

Welcome to the “Combinatorics and Geometry in İstanbul” workshop, taking place on August 5-
6 in the enchanting city of İstanbul. This two-day event brings together researchers and enthusiasts
working at the intersection of algebra, combinatorics, and geometry, aiming to foster collaboration
and the exchange of ideas in a vibrant academic setting.

The program features a rich collection of talks by both invited and contributing participants,
highlighting recent developments and open problems across a range of topics. We hope to pro-
vide a stimulating environment for sharing ideas, initiating new collaborations, and deepening our
understanding of these interconnected fields.

We are delighted to convene this event in such a unique and inspiring location and look forward
to two days of stimulating academic exchange and collaboration.

Our Sponsors

We gratefully acknowledge the support of

Navist
Mühendislik

TÜBİTAK
Bahçeşehir
University

Türk
Matematik Derneği
MAD programı

Scientific and Organising Committee

Kağan Kurşungöz (Sabancı University)

Müge Taşkın (Boğaziçi University)

Nermine El Sissi (Bahçeşehir University)

Selçuk Kayacan (Bahçeşehir University)
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Local Info

Transportation: İstanbul has two airports. Istanbul Aiport (IST) and Sabiha Gökçen Airport
(SAW).

How to come from Istanbul Airport: Taxis are readily available at the airport exits for a con-
venient transfer to your destination. You can also take the M11 Metro Line to Gayrettepe, then
transfer to a municipal bus to Beşiktaş. Alternatively, the Havaist Airport Buses provide a reliable
and affordable option for reaching various parts of the city. For further details, you can visit the
official İstanbul Airport website.

How to come from Sabiha Gökçen Airport: Taxis are available at the airport exits for a direct
transfer to your destination. Alternatively, you can take Public Buses or the Havabus Shuttle to
reach Kadıköy or Taksim.

• From Kadıköy, you can take a ferry to Beşiktaş

• From Taksim, you can reach Beşiktaş by bus (multiple lines are available) or by Dolmuş
(shared taxi).

Another option is to take the M4 Metro to Kadıköy and then transfer to a ferry heading to
Beşiktaş.

From İstanbul Bus Station (Esenler Otogar): Please note that Esenler Otogar is the main ter-
minal for intercity buses. However, depending on your bus company, you may have the option to
disembark at an earlier station, which could make transferring to Beşiktaş more convenient. Addi-
tionally, some bus companies offer complimentary shuttle services directly to Beşiktaş, so be sure
to check with your provider.

If you arrive at Esenler Otogar, you can follow this route to reach Beşiktaş:

1. Take the M1A Metro heading to Yenikapı.

2. At Yenikapı, transfer to the M2 Metro and travel to Taksim.

3. From Taksim, take a bus (multiple lines are available) or a Dolmuş (shared taxi) to Beşiktaş.

Using Public Transportation in İstanbul:
İstanbulkart
The İstanbulkart is a rechargeable card that provides easy access to almost all public transporta-

tion services in İstanbul, including metro, buses, trams, ferries, and more. It is widely available at
kiosks and vending machines near transportation hubs.

You can also manage your İstanbulkart using the official İstanbulkart App, which makes it easy
to check your balance, recharge your card, and plan your trips. Download the app here:

• Google Play Store

• Apple App Store

Route Planning Apps:
For planning your routes, you can use the following apps:
İETT “Otobüsüm Nerede” App: This official app by İETT (İstanbul Electric Tramway and

Tunnel) helps you find the best bus routes and track buses in real-time. Download the app here:

• Google Play Store

• Apple App Store

Google Maps: Google Maps is also highly reliable for route planning in İstanbul. It provides
detailed directions for public transportation, walking, and driving.

Tip: While these apps are helpful, asking a local for directions can sometimes be the best way

to navigate İstanbul’s public transportation system.
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CGI 2025
Tuesday Program

8:30 - 9:15 Registration

9:15 - 9:30 Opening Talk

9:30 - 10:30
Ayesha Asloob Qureshi (Sabancı University)

Squarefree powers of facet ideals of simplicial trees

10:30 - 11:30
Mikhail Ostrovskii (St. John’s University)

Low-distortion embeddings of graphs with large girth

11:30 - 12:20 Coffee break (20 minutes)

Omar Tout (Sultan Qaboos University)

On the product of two equal conjugacy classes

of the symmetric group

12:20 - 12:50
Şafak Özden (TED University)

Stability Property of Block Permutations

12:50 - 14:00 Lunch and collaboration

14:00 - 15:00
Russ Woodroofe (University of Primorska FAMNIT)

Extremal set theory as algebraic geometry

15:00 - 15:50

Sofiya Ostrovska (Atılım University)

Geometry of the metric on Q+

induced by limit q-Bernstein operators

Coffee break

15:50 - 16:50
Mevlüde Alizade (Ankara University)

On Two-Faced Simplicial Surfaces

Coşar Gözükırmızı (İstanbul Beykent University)

Implementation of Enhanced Multivariance Products

Representation for Multiway Arrays

16:50 - 17:40

Marko Pešović (University of Belgrade)

Weighted quasisymmetric functions

and stabilization of graph-associated

generalized permutohedra

Coffee break

17:40 - 18:40
Marie Amalore Nambi (Sabancı University)

Binomial Edge Ideals of Linear Type

Ezgi Kantarcı Oğuz (Galatasaray University)

Oriented Posets and Cluster Algebras
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CGI 2025
Wednesday Program

09:00 - 10:00
Tolga Birdal (Imperial College London)

Topological Deep Learning: Going Beyond Graph Data

10:00 - 11:00
Martina Juhnke (University of Osnabrück)

Monotone paths on polytopes: Positive and negative results

11:00 - 11:50 Coffee Break (20 minutes)

Abhiram Natarajan (University of Warwick)

Partitioning Theorems for Sets

of Semi-Pfaffian Sets, with Applications

11:50 - 12:50

David Yost (Federation University)

Classification of polytopes

with not many edges

Mehmet Akif Yıldız (Centrum Wiskunde

& Informatica (CWI))

Path Partitions in Regular Digraphs

12:50 - 14:00 Lunch & Collaboration

14:00 - 15:00
Volkmar Welker (Philipps-Universität Marburg)

Symmetries in Simplicial and Cubical Homology Theories

15:00 - 16:00

Qays R. Shakir (Middle Technical University)

Duality of Some Topological Graph Operations

on Surface Graphs

Aslı Tuğcuoğlu Musapaşaoğlu (Sabancı University)

Invariants of Toric Double Determinantal Rings

16:00 - 16:20 Coffee break

16:20 - 17:20
Yusuf Civan (Süleyman Demirel University)

Problems surrounding the Hadwiger number of graphs topologically

17:20 - 18:20

Damir Ferizović (KU Leuven)

Point distributions on the sphere:

a biased introduction

Reymond Akpanya (RWTH Aachen University)

Construction of Toroidal Polyhedra

corresponding to perfect Chains

of isosceles Tetrahedra

20:00 - . . . Workshop dinner at Hamdi restaurant
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Abstracts for Invited Talks

Tolga Birdal
( Imperial College London, UK, t.birdal@imperial.ac.uk )

Topological Deep Learning: Going Beyond Graph Data

Topological deep learning is a rapidly growing field that pertains to the development of deep
learning models for data supported on topological domains such as simplicial complexes, cell com-
plexes, and hypergraphs, which generalize many domains encountered in scientific computations.
In this talk, Tolga will present a unifying deep learning framework built upon an even richer data
structure that includes widely adopted topological domains. Specifically, he will begin by introduc-
ing combinatorial complexes, a novel type of topological domain. Combinatorial complexes can be
seen as generalizations of graphs that maintain certain desirable properties. Similar to hypergraphs,
combinatorial complexes impose no constraints on the set of relations. In addition, combinatorial
complexes permit the construction of hierarchical higher-order relations, analogous to those found in
simplicial and cell complexes. Thus, combinatorial complexes generalize and combine useful traits
of both hypergraphs and cell complexes, which have emerged as two promising abstractions that
facilitate the generalization of graph neural networks to topological spaces. Second, building upon
combinatorial complexes and their rich combinatorial and algebraic structure, Tolga will develop
a general class of message-passing combinatorial complex neural networks (CCNNs), focusing pri-
marily on attention-based CCNNs. He will additionally characterize permutation and orientation
equivariances of CCNNs, and discuss pooling and unpooling operations within CCNNs. The per-
formance of CCNNs on tasks related to mesh shape analysis and graph learning will be provided.
The experiments demonstrate that CCNNs have competitive performance as compared to state-of-
the-art deep learning models specifically tailored to the same tasks. These findings demonstrate
the advantages of incorporating higher-order relations into deep learning models and shows great
promise for AI4Science.

Keywords: topology, deep learning, high-order networks

References:
[1] Hajij, M., Zamzmi, G., Papamarkou, T., ...., Birdal, T. ... & Schaub, M. T., Topological

deep learning: Going beyond graph data, arxiv preprint. arXiv:2206.00606 (2022).
[2] Papamarkou, T., Birdal, T., Bronstein, M. M., Carlsson, G. E., Curry, J., Gao, Y., ... &

Zamzmi, G., Position: Topological Deep Learning is the New Frontier for Relational Learning,
International Conference on Machine Learning, 39529-39555 (2024).

[3] Hajij, M., Bastian, L., Osentoski, S., Kabaria, H., Davenport, J. L., Dawood, S., ... & Birdal,
T., Copresheaf Topological Neural Networks: A Generalized Deep Learning Framework arXiv
preprint, arXiv:2505.21251.
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Yusuf Civan
( Süleyman Demirel University, Turkey, yusufcivan@sdu.edu.tr )

Problems surrounding the Hadwiger number of graphs topologically

For a (finite and simple) graph G, its Hadwiger number had(G) is defined to be the largest integer
h such that G contains the complete graph Kh as a minor. The most long standing and intriguing
conjecture of Hugo Hadwiger (1943) claims that the inequality χ(G) ≤ had(G) holds for every graph
G, where χ(G) denotes the chromatic number. As opposed to the Hadwiger number, the chromatic
number of graphs is topologically lower bounded. That brings the question of whether these topolog-
ical bounds are also valid lower bounds to the Hadwiger number. I hope to address these questions
in detail as well as a recent conjectural detection of the Hadwiger number due to Holmsen, Kim
and Lee (2019) in terms of the homological dimension of hypergraphs of connected covers. Inde-
pendent of the later conjecture, I will prove that the Helly number of (simple) hypergraphs can be
topologically lower bounded.
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Martina Juhnke
( University of Osnabrück, Germany, juhnke-kubitzke@uni-osnabrueck.de )

Monotone paths on polytopes: Positive and negative results

To solve a linear program, the simplex method follows a path in the graph of a polytope, on which a
linear function increases. The length of this path is a key measure of the complexity of the simplex
method.

Our starting point is a conjecture by Jesús De Loera stating that the number of paths counted
according to their length forms a unimodal sequence.

We give examples (old and new) for which this conjecture is true but we disprove this conjecture
by constructing counterexamples for several classes of polytopes. However, we show that De Loera
is “statistically correct”: We prove that the length of a coherent path on a random polytope (with
vertices chosen uniformly on a sphere) admits a central limit theorem.

This is joint work with Germain Poullot.
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Mikhail I. Ostrovskii
( Department of Mathematics and Computer Science, St. John’s University,Queens, 11439, New

York, USA, ostrovsm@stjohns.edu )

Low-distortion embeddings of graphs with large girth

There exist families of graphs with indefinitely growing girths which admit uniformly bilipschitz
embeddings into L1, and thus do not weakly contain any families of expanders. This result was
proved by the speaker [5], answering the problem raised in [3] and publicized in the 2002 International
Congress [2]. During the last decade, this fact has found important applications; see [4]. Recently,
interest in the result increased because of its connection to the transportation cost theory and
related fields; see [1]. In the talk, I am going to describe the construction and some of the possible
directions of further research.

MSC 2010: 46B85, 51F30

Keywords: girth of a graph, low-distortion embedding, transportation cost

References:
[1] C. Gartland, Hyperbolic metric spaces and stochastic embeddings. Forum Math. Sigma 13

(2025), Paper No. e29.
[2] N. Linial, Finite metric spaces–combinatorics, geometry and algorithms, in: Proceedings of

the International Congress of Mathematicians, Vol. III (Beijing, 2002), 573–586, Higher Ed. Press,
Beijing, 2002.

[3] N. Linial, A. Magen, A. Naor, Girth and Euclidean distortion, Geom. Funct. Anal., 12
(2002), 380–394.

[4] D. Osajda, Small cancellation labellings of some infinite graphs and applications. Acta Math.
225 (2020), no. 1, 159–191.

[5] M. I. Ostrovskii, Low-distortion embeddings of graphs with large girth, J. Funct. Anal., 262
(2012), 3548–3555.

10



Ayesha Asloob Qureshi
( Sabancı Üniversitesi, Turkey, ayesha.asloob@sabanciuniv.edu )

Squarefree powers of facet ideals of simplicial trees

Let I be a squarefree monomial ideal. The k-th squarefree power I [k] of I is the ideal generated by
the squarefree monomials among the generators of Ik. The study of squarefree powers of squarefree
monomial ideals is closely connected with the classical theory of matchings in hypergraphs. More-
over, squarefree powers of I provide important information about the ordinary powers of I, since
the multigraded minimal free resolution of I [k] appears as a subcomplex of the multigraded minimal
free resolution of Ik. We will discuss the squarefree powers of facet ideals associated with simplicial
trees (equivalently, totally balanced hypergraphs), focusing on the linearity of their minimal free
resolutions, Castelnuovo–Mumford regularity and projective dimension.
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Volkmar Welker
( Philipps-Universität Marburg, Germany, welker@mathematik.uni-marburg.de )

Symmetries in Simplicial and Cubical Homology Theories

In this talk we discuss how symmetries of simplcies and cubes can be used to reduce the size of
chain complexes computing homology. For simplcial complexes this is a classical fact. We present a
cubical homology theory of graphs which exhibits hyperoctahedral symmetries. We then show the
in characterisitic 0 the symmetry chain complex is acyclic for all simplicial and cunbical sets with
symmetries.
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Russ Woodroofe
( University of Primorska FAMNIT, Slovenia, russ.woodroofe@famnit.upr.si )

Extremal set theory as algebraic geometry

Extremal set theory is interested in questions such as ”what is the largest family of pairwise inter-
secting k-element subsets of an n-element set?” Many questions of this type can be modeled with
exterior algebras, and admit extensions such as ”what is the largest self-annihilating subspace of
k-forms in an exterior algebra with n variables”? The shifting technique in extremal set theory
corresponds to algebraic geometric limits of certain curves in varieties. In this talk, I will overview
these connections, and go on to discuss recent joint work with Bulavka and Gandini. In this work,
we find a maximum subspace of k-forms in an n-variable exterior algebra that is self-annihilating
but that is not annihilated by any 1-form. This extends the Hilton-Milner theorem of extremal set
theory to the exterior algebra setting, and answers questions of Scott and Wilmer and of myself.
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Abstracts for Contributed Talks

Reymond Akpanya
( RWTH Aachen University, Germany, reymond.akpanya@rwth-aachen.de )

Construction of Toroidal Polyhedra corresponding to perfect Chains of isosceles
Tetrahedra

In 1957, Steinhaus conjectured that a chain of regular tetrahedra, meeting face-to-face and forming
a closed loop, does not exist [1]; this was later proven by Świerczkowski, see [2]. We show that
modifying the statement by requiring the tetrahedra of a chain to be isosceles results in the first
examples of closed chains with all tetrahedra being congruent. As a result, we provide a census
of toroidal polyhedra arising from closed chains consisting of up to 20 isosceles tetrahedra, see [3].
Moreover, we establish the existence of an infinite family of toroidal polyhedra emerging from chains
of isosceles tetrahedra. Finally, we exploit our methods to construct clusters of isosceles tetrahedra
that yield polyhedra of higher genera. This is joint work with Vanishree Krishna Kirekod, Alice C.
Niemeyer and Daniel Robertz [4].

MSC 2010: 52B05, 05C15

Keywords: Tetrahedral chains, Toroidal polyhedron, polyhedral realization

References:
[1] Hugo Steinhaus. Problème 175. In Colloquium Mathematicum, volume 4, page 243, 1957.
[2] S. Świerczkowski, On chains of regular tetrahedra, Colloq. Math. 7 (1959), 9–10. DOI:

10.4064/cm-7-1-9-10.
[3] Reymond Akpanya and Vanishree Krishna Kirekod. Embeddings-of-wild-coloured-surfaces.

2024. Available at: https://github.com/ReymondAkpanya/Embeddings-of-wild-coloured-surfaces.
git.

[4] Reymond Akpanya, Vanishree Krishna Kirekod, Alice C. Niemeyer, and Daniel Robertz.
Construction of Toroidal Polyhedra Corresponding to Perfect Chains of Wild Tetrahedra. arXiv
preprint arXiv:2411.14924, 2024. Available at: https://arxiv.org/abs/2411.14924.
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Mevlüde Alizade
( Ankara University, Turkey, 21050024@ogrenci.ankara.edu.tr )

On Two-Faced Simplicial Surfaces

A simplicial surface can be seen as the incidence geometry of the faces, edges and vertices of a
triangulated surface [4, 7]. Such a surface is two-faced, if it is closed and the automorphism group
splits the faces of the surface into exactly two orbits. This work extends the research initiated by
Akpanya and Spreer on the classification of face-transitive simplicial surfaces [1].

The primary purpose of this project is to investigate this class of highly symmetric simplicial
surfaces. Specifically, we define the neighbour type as a pair (n1, n2) recording how many faces from
one orbit are adjacent to faces in the other orbit, and introduce corresponding orbit-stabiliser tuples
to distinguish surfaces with similar adjacency patterns. We determine exactly 12 distinct types of
two-faced simplicial surfaces, and provide examples by exploiting the existing databases of simplicial
surfaces [6] and cubic graphs [2, 8]. These computations are carried out in GAP [3]. Furthermore,
we present various examples of two-faced simplicial spheres, and compute embeddings of these
spheres into R3 as polyhedra having all edge lengths equal to 1. These polyhedra are obtained by
solving nonlinear equations in Maple [5]. This project is supervised by Alice C. Niemeyer, Reymond
Akpanya and Meike Weiß.

MSC 2010: 05E18, 52B70, 05C10

Keywords: Simplicial surfaces, Group actions on surface triangulations, Cubic graphs, Graph
colourings

References:
[1] Reymond Akpanya and Jonathan Spreer, A census of face-transitive surfaces, 2025.
[2] Gunnar Brinkmann and Brendan D. McKay, Fast generation of planar graphs, MATCH

Commun. Math. Comput. Chem. 58 (2007), no. 2, 323–357. MR 2357364
[3] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.14.0, 2024.
[4] Tom Frederik Görtzen, Constructing simplicial surfaces with given geo- metric constraints,

Dissertation, RWTH Aachen University, Aachen, 2024, Veröffentlicht auf dem Publikationsserver
der RWTH Aachen University., pp. 1 Online-Ressource : Illustrationen.

[5] Maple User Manual, Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario,
Canada, 1996-2025.

[6] Alice C. Niemeyer, Markus Baumeister, Reymond Akpanya, Tom Goertzen, Meike Weiß, and
Lukas Schnelle, SimplicialSurfaces, Version 0.6, https://github.com/gap-packages/SimplicialSurfaces,
2025.

[7] Alice C. Niemeyer, Wilhelm Plesken, and Daniel Robertz, Simplicial surfaces of congruent
triangles, In Preparation (2025).

[8] P Potočnik, Pablo Spiga, and Gabriel Verret, Cubic vertex-transitive graphs on up to 1280
vertices, J. Symbolic Comput. 50 (2013), 465–477. MR 2996891
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Damir Ferizović
( Department of Mathematics, KU Leuven, Belgium, damir.ferizovic@kuleuven.be )

Point distributions on the sphere: a biased introduction

The start of investigation into uniform distribution on the unit interval originated from the paper
of Weyl [1] and since has been generalized to various compact manifolds or groups. In this talk
we will give an overview of nicely distributed point sets on the unit 2-sphere of R3 that are based
on my recent papers [2, 3]. Such point sets could for instance be applied to help design spherical
detectors as they appear in Fermilab’s MiniBooNE neutrino experiment. Expect many pictures.

MSC 2010: 11K38, 52C99

Keywords: Uniform distribution, discrepancy, two sphere

References:
[1] H. Weyl, Über die Gleichverteilung von Zahlen mod Eins, Math. Ann. 77, 313–352 (1916).
[2] D. Ferizović, Spherical Cap Discrepancy of Perturbed Lattices Under the Lambert Projection,

Discrete Comput Geom 71, 1352–1368 (2024).
[3] D. Ferizović, Uniform distribution via lattices: from point sets to sequences, Foundations of

Computational Mathematics (to appear).

Coşar Gözükırmızı
( İstanbul Beykent University, Turkey, cosargozukirmizi@beykent.edu.tr )

Implementation of Enhanced Multivariance Products Representation for Multiway
Arrays

High Dimensional Model Representation (HDMR) is a representation for functions as sum of terms
of increasing number of variables. HDMR has been adapted for the discrete case to decompose
multiway arrays. Therefore, there is HDMR for functions and also HDMR for multiway arrays.
Enhanced Multivariance Products Representation (EMPR) is a generalization of HDMR where there
are univariate supports (univariate functions for representing functions; and vectors for representing
multiway arrays). Introducing these parameters into the finite expansion provides the ability for
the truncations to better represent the original function or multiway array. Within this work, we
limit ourselves to the decomposition of multiway arrays. Therefore, we use HDMR and EMPR to
mean HDMR for multiway arrays, and EMPR for multiway arrays respectively. This work looks
at Enhanced Multivariance Products Representation (certain generalization of HDMR) from tensor
network perspective. The work provides the equalities for computing the components and also the
representation itself, using tensor network diagram notation. We implemented a computer program
for Enhanced Multivariance Products Representation (EMPR) for multiway arrays in Julia using
ITensor library. This is the first publicly available code for EMPR for multiway arrays and can
be downloaded from the url https://gitlab.com/cosargozukirmizi/emprmaj and can be used
freely. The algorithm is quite general and is able to compute all EMPR components, truncations,
remainders and quality measurers for any multiway array of floating-point numbers, as long as the
computational resources allow it.

Keywords: high dimensional model representation, multidimensional array decomposition,
tensor network diagram
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Aslı T. Musapaşaoğlu
( Sabancı University, Turkey, asli.musapasaoglu@sabanciuniv.edu )

Invariants of Toric Double Determinantal Rings

This is a joint work with J. Biermann, E. De Negri, O. Gasanova and S. Roy. In this work, we
study a class of double determinantal ideals denoted Irmn, which are generated by minors of size 2,
and show that they are equal to the Hibi rings of certain finite distributive lattices. We compute
the number of minimal generators of Irmn, as well as the multiplicity, regularity, a-invariant, Hilbert
function, and h-polynomial of the ring R/Irmn, and we give a new proof of the dimension of R/Irmn.
We also characterize when the ring R/Irmn is Gorenstein, thereby answering a question of Li in the
toric case. Finally, we give combinatorial descriptions of the facets of the Stanley-Reisner complex
of the initial ideal of Irmn with respect to a diagonal term order.

Marie Amalore Nambi*
( Sabanci University, Faculty of Engineering and Natural Sciences, Orta Mahalle, Tuzla, 34956,

Istanbul, Turkey, amalore.pushparaj@sabanciuniv.edu )
Neeraj Kumar
( Department of Mathematics, Indian Institute of Technology Hyderabad, Kandi, Sangareddy -

502285, India, neeraj@math.iith.ac.in )

Binomial Edge Ideals of Linear Type

An ideal I of a commutative ring R is said to be of linear type when its Rees algebra and symmetric
algebra exhibit isomorphism. In this talk, we discuss the conjecture put forth by Jayanthan, Kumar,
and Sarkar in [1] that if G is a tree or a unicyclic graph, then the binomial edge ideal of G is of
linear type.

MSC 2010: 05E40, 13F65

Keywords: Rees algebra, linear type, binomial edge ideal

References:
[1] A. V. Jayanthan, A. Kumar, and R. Sarkar: Almost complete intersection binomial edge

ideals and their Rees algebras. J. Pure Appl. Algebra 225, no. 6, Paper No. 106628, 19 pp, (2021).
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Martin Lotz
( University of Warwick, UK, martin.lotz@warwick.ac.uk )
Abhiram Natarajan*
( University of Warwick, UK, abhiram.natarajan@warwick.ac.uk )
Nicolai Vorobjov
( University of Bath, UK and St. Petersburg Department of V. A. Steklov Institute of Mathemat-

ics of the Russian Academy of Sciences (PDMI RAS), Russia, masnnv@bath.ac.uk, vorobjov@pdmi.ras.ru

)

Partitioning Theorems for Sets of Semi-Pfaffian Sets, with Applications

We generalize the seminal polynomial partitioning theorems of Guth and Katz [2,1] to a set of
semi-Pfaffian sets. Specifically, given a set Γ ⊆ Rn of k-dimensional semi-Pfaffian sets, where each
γ ∈ Γ is defined by a fixed number of Pfaffian functions, and each Pfaffian function is in turn defined
with respect to a Pfaffian chain q⃗ of length r, for any D ≥ 1, we prove the existence of a polynomial
P ∈ R[X1, . . . , Xn] of degree at most D such that each connected component of Rn \Z(P ) intersects

at most ∼ |Γ|
Dn−k−r elements of Γ. Also, under some mild conditions on q⃗, for any D ≥ 1, we prove

the existence of a Pfaffian function P ′ of degree at most D defined with respect to q⃗, such that

each connected component of Rn \Z(P ′) intersects at most ∼ |Γ|
Dn−k elements of Γ. To do so, given

a k-dimensional semi-Pfaffian set γ ⊆ Rn, and a polynomial P ∈ R[X1, . . . , Xn] of degree at most
D, we establish a uniform bound on the number of connected components of Rn \ Z(P ) that γ
intersects; that is, we prove that the number of connected components of (Rn \Z(P ))∩γ is at most
∼ Dk+r. Finally, as applications, we derive Pfaffian versions of Szemerédi-Trotter-type theorems,
and also prove bounds on the number of joints between Pfaffian curves.

Keywords: o-minimal, incidence geometry, discrete geometry, pfaffian functions, pfaffian sets,
semi-pfaffian sets, joints, szemeredi-trotter, polynomial partitioning, pfaffian partitioning, partition-
ing, guth, katz
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Oriented Posets and Cluster Algebras

Oriented posets are posets with specialized end points, which we can connect to build larger posets.
They come with corresponding matrices, where multiplication corresponds to linking posets. We
look at the case of labeled fence posets and show that they can be used to calculate cluster expansions
effectively. We look at more potential applications and open questions.

Keywords: Posets, Lattices, Diophantine Equations, Cluster Algebras.
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Geometry of the metric on Q+ induced by limit q-Bernstein operators

In this talk, some geometric properties of the uniformly discrete metric space (Q+, ρ), where

ρ(a/b, c/d) := 2(m− 1)/m, m =
max{ad, bc}
gcd(ad, bc)

(1)

are discussed. We study this metric space in the spirit of the classical Blumenthal’s book [1]. The
metric space (Q+, ρ) emerges in the study of the limit q-Bernstein operators Bq, q ∈ [0, 1]. These
operators occur naturally in the investigation of the q-Bernstein polynomials proposed by G. M.
Phillips in [3] and they form a one-parametric family of positive linear operators of the unit norm on
C[0, 1]. It is known that the mapping q 7→ Bq is continuous in the strong operator topology for all
q ∈ [0, 1], while, in the uniform operator topology, the mapping is discontinuous for each q ∈ [0, 1].

What is more, the set {Bq}q∈[0,1] equipped with the metric d(Bq, Br) := ∥Bq − Br∥, where ∥.∥
is the operator norm on C[0, 1], forms a uniformly discrete metric space, where each operator Bq is
an isolated point and 1 ⩽ ∥Bq −Br∥ ⩽ 2 whenever q ̸= r. See [2].

It is exactly the metric d that induces the metric (1) on Q+.
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Stability Property of Block Permutations

We investigate the Hecke algebras Hn,k = C
[
(Sk ≀ Sn)\Skn/(Sk ≀ Sn)

]
, k ≥ 2, arising from the

double–coset convolution algebra of the wreath-product pair (Skn, Sk ≀Sn). Using the action of Skn

on the set of k-partitions of {1, . . . , kn} we equip Hn,k with a natural filtration indexed by orbit
data. A graph–theoretic encoding of double cosets—via “red-blue” type graphs and their modified
types— yield:
i) Stability. The associated filtered algebras Fn,k are independent of n; hence the family {Hn,k}n≥1

satisfies a Farahat–Higman–style [1] stability property and is governed by a universal filtered algebra
F∞,k [2,3].
ii) Polynomiality. Every structure constant cLM,N (n) in the canonical basis depends polynomially

on n; if the weight equality ∥L∥ = ∥M∥+ ∥N∥ holds, cLM,N (n) is actually constant
iii) New non-commutative cases. For k > 2 the algebras Hn,k are non-commutative; our results
extend the previously understood commutative case k = 2 [4] (the Brauer–symmetric pair (S2n, Bn))
and supply the first full stability theorem for Hecke algebras of higher wreath products.

Keywords: Representation Theory, Gel’fand Pairs , Farahat-Higman Algebra, Block Permu-
tations, Induced Representations, Hecke Algebras
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Weighted quasisymmetric functions and stabilization of graph-associated generalized
permutohedra

For a simple graph Γ on n vertices, we define a sequence of generalized permutohedra

QΓ,1, QΓ,2, . . . , QΓ,n−1,

where each polytope QΓ,m is the Minkowski sum of simplices indexed by subsets of vertices that
induce connected subgraphs, with the constraint that each subset has cardinality at most m + 1.
This sequence interpolates between two well-studied objects: the graphical zonotope QΓ,1 and the
graph-associahedron QΓ,n−1, both known for their deep combinatorial and geometric properties.

For each polytope QΓ,m, we associate a weighted quasisymmetric function Fq, defined as

Fq(QΓ,m) :=
∑

ω=(ω1,ω2,...,ωn)∈Zn
+

xω1xω2 · · ·xωn qdim(Cω),

where Cω denotes the face of the polytope QΓ,m whose normal cone contains the vector ω in its
relative interior. This weighted quasisymmetric function encodes the f–polynomial as a special case,
and generalizes the Stanley chromatic symmetric function [4] for graphical zonotopes, as well as the
chromatic quasisymmetric function [1] for graph-associahedra. Results in [2] include a detailed
study of the stabilization behavior of these functions

Fq(QΓ,1), Fq(QΓ,2), . . . , Fq(QΓ,n−1)

and their associated polytopes in terms of normal equivalences, revealing new structural insights
into this family of polytopes and their combinatorial invariants.

In the special case q = 0, the function F0(QΓ,m) can be expressed as a sum of quasisymmetric
enumerators of P -partitions of certain newly introduced H–posets associated to the vertices of the
polytope QΓ,m. For m = 1, note that these H–posets correspond to the transitive closures of acyclic
orientations of the graph Γ, whereas for m = n− 1, they correspond to B–trees, defined in [3].
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[2] M. Pešović, T. Stojadinović, Between graphical zonotope and graph–associahedron, Turkish

Journal of Mathematics 47, 1362–1373 (2023).
[3] A. Postnikov, Permutohedra, associahedra, and beyond, International Mathematics Research

Notices 1026–1106 (2009).
[4] R.Stanley, A Symmetric Function Generalization of the Chromatic Polynomial of a Graphs,

Advances in mathematics 111, 166–194 (1995).

21



Qays R. Shakir
( Middle Technical University, Iraq, qays.shakir@mtu.edu.iq )

Duality of Some Topological Graph Operations on Surface Graphs

A surface graph is an embedding of an abstract graph in a surface without edge crossings, [1] and [3].
The theory that studies such graphs is called topological graph theory. In such a theory, topological
graph operations play a significant role in building various classes of surface graphs. Given minimal
surface graphs in the class of interest, we can use certain graph operations to build the class, starting
from the minimal graphs and then extending them [2]. In a duality setting, it is crucial to know the
duality of each topological operation to conduct simultaneous constructing of a surface graph class
and its dual class.

Our focus in this work is on some fundamental operations like digon, triangle and quadrilateral
operations. We claim that the duals of these three operations are the topological Henneberg opera-
tions. We demonstrate our claim via various tools such as rotation system, delta matroid and polar
duality.
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On the product of two equal conjugacy classes of the symmetric group

Let n be a positive integer. A partition of n is a list of non-increasing integers (λ1, λ2, · · · , λr) that
sum up to n. We will write λ in the multiplicative way λ = (1m1 , 2m2 , · · · ) where mi is the number
of times the part i appears in λ. For example, (17, 33, 4) is a partition of 20. The cycle-type of a
permutation σ of n, denoted ct(σ), is the partition of n obtained from the length of the cycles of σ.
For example, the cycle type of the permutation (3, 6, 2)(1, 5)(4, 7) is the partition (22, 3) of 7. The
conjugacy classes of Sn, the symmetric group on n elements, are in one-to-one correspondence with
the set of all partitions of n. If λ is a partition of n, its corresponding conjugacy class is Cλ, where
Cλ := {σ ∈ Sn : ct(σ) = λ}. The structure coefficients cρλδ of the center of the symmetric group
algebra are defined by the equation:

CλCδ =
∑

ρ partition of n

cρλδCρ.

Computing these coefficients allows us to compute any product in Z(C[Sn]). However, it is very
difficult to give explicit formulas for these coefficients, even in particular cases of partitions, see [1]
and [2]. It can be shown, see [3] and [4], that the structure coefficients of Z(C[Sn]) are polynomial
in n. We show explicit formulas for the diagonal structure coefficients cλ(2k)(2k) and cλ(1,2k)(1,2k).
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Path Partitions in Regular Digraphs

The problem of partitioning a graph into as few vertex-disjoint paths as possible was introduced by
Ore [6], who showed that every n-vertex graph can be partitioned into at most n−σ2 vertex-disjoint
paths, where σ2 denotes the minimum degree sum over all pairs of non-adjacent vertices. Magnant
and Martin [4] conjectured that regularity significantly improves this bound: every n-vertex d-
regular graph can be partitioned into at most n/(d + 1) vertex-disjoint paths. The conjecture has
been confirmed for d ≤ 5 in [4], for d = 6 in [1], and for d = Ω(n) in [2]. A recent work [5] has also
established an approximate version. A generalization to directed and oriented graphs was proposed
in [3], along with a proof for the case d = Ω(n). In this work, we prove the directed analogue for
d ≤ 5 and the oriented analogue for d ≤ 3. Our approach also yields a significantly shorter proof of
the undirected case for d = 6 than the one in [1].
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Classification of polytopes with not many edges

The combinatorial classification of polytopes under reasonable restrictions is a long respected un-
dertaking. The classification of all d-dimensional polytopes with v = d+2 or d+3 vertices is fairly
well understood. For v = d + 4, the complete classification is known only for d ≤ 5 [2], and for
v = d+5, it was solved only recently for d = 4 [1]. Both of these solutions provide a huge database
of examples. We propose to go in a different direction, characterising polytopes of all dimensions
but with restrictions also on the number e of edges.

Any vertex of a d-dimensional polytope must have degree at least d. It is natural to define the
excess degree of a vertex as its degree minus the dimension, and the excess degree of a polytope
as the sum of the excess degrees of its vertices. The excess degree of a polytope is easily checked to
equal 2e − dv. Polytopes with excess 0 are the simple polytopes; an application of the g-theorem
shows that for a simple polytope, v must either equal d+1, 2d, 3d− 3 or 3d− 1, or exceed 4d− 8. A
sample easy consequence of this is that no simple 6-polytope can have 8, 9, 10, 11, 13 or 14 vertices.

It is known [4] that there are no d-polytopes with excess degree in the range [1, d− 3].
In any d-polyope with excess d − 2, there is either a single vertex with excess d − 2, or there

are d − 2 vertices with excess 1, which form a simplex face. We use this to completely classify
all polytopes with excess degree d − 2 and strictly less than 3d vertices. For each d ≥ 5, there are
precisely 6 examples. From these examples, we see that v must satisfy either v = d+2, 2d−1, 2d+1,
or 3d− 2, or v ≥ 3d.

We have recently shown that polytopes with excess d, d+2 or 2d−6 also have strong limitations
on their structure. In general, the nonsimple vertices all have the same degree, and they form the
vertex set of a face. Moreover no polytope at all has excess degree in the range [d+ 3, 2d− 7].
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